Archivi categoria: La “bella” matematica

Ellisse: dimostrazione geometrica dell’equivalenza delle sue due definizioni

“Ogni volta che cerco di approfondire la teoria della gravitazione di Newton mi imbatto, prima o poi, nell’ellisse e nelle sue proprietà geometriche.
Dopo diversi anni sono sempre più convinto che raggiungere una migliore comprensione dell’ellisse e delle sue numerose proprietà geometriche, anche le più sottili e nascoste, sia un passaggio fondamentale per capire più a fondo le teorie fisiche e matematiche in cui essa compare.

La definizione geometrica dell’ellisse può essere formulata tramite due definizioni alternative ma equivalenti…

Ellipse construction from focus-directrix[vai alla pagina]

Pioggia

A volte la matematica può essere totalmente inutile, ma sorprendentemente semplice e bella

Un altro esempio è la seguente animazione, che è stata generata in Wolfram Mathematica tramite un codice davvero molto breve (solo 221 caratteri di lunghezza):

Animate[With[{r := RandomReal[]}, 
  Graphics[BlockRandom[
    Table[With[{z = r}, {, GrayLevel[2 (t - z)], 
       Thickness[0.03 (0.20 - t + z)], 
       Circle[{1.7 r, 0.82 r}, Max[0, t - z]]}], {k, 1, 45}]], 
   PlotRange -> {{0, 1.7}, {0, 0.82}}]],
{t, 0, 1}, DefaultDuration -> 20]

Troppo per poter essere inviata al twitter @wolframtap (Wolfram Tweet-a-Program). Ma abbastanza breve da mostrare come alcune semplici idee matematiche possono essere davvero molto semplici e belle (anche se, forse, inutili). Ecco il video inviato a youtube:

Una “specie” di torre Eiffel (quando la matematica è inutile ma bella)

A volte la matematica può essere totalmente inutile, ma sorprendentemente semplice e bella.
Un possibile esempio di questa idea è la seguente immagine, che si può generare, in Wolfram Mathematica, con un codice di lunghezza inferiore a quello di un twit (123 caratteri):

Graphics3D[Table[Rotate[Cuboid[{-0.9^k, -0.9^k, (1/20)*k}, 
{0.9^k, 0.9^k, (1/20)*(k + 1)}], k*0.1, {0, 0, 1}], {k, 0, 60}]]

EiffelQuesto mini-programma è stato anche pubblicato nel twitter @wolframtap (Wolfram Tweet-a-Program).

QUI il collegamento al twit.

Un altro interessante aspetto relativo al fantasioso e stravagante edificio rappresentato nell’immagine è il fatto che, malgrado esso possa avere un’altezza infinita, avrà comunque un volume finito.

In questa pagina è presentata una versione un poco più estesa del programma, con una dimostrazione interattiva in cui è possibile modificare l’angolo tra parallelepipedi consecutivi.

(Grazie a BV per avermi suggerito questa idea)